Rational Krylov algorithms for nonsymmetric eigenvalue problems. II. matrix pairs

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rational Krylov Algorithms for Eigenvalue Computation and Model Reduction

Rational Krylov is an extension of the Lanczos or Arnoldi eigenvalue algorithm where several shifts (matrix factorizations) are performed in one run. A variant has been developed, where these factoriza-tions are performed in parallel. It is shown how Rational Krylov can be used to nd a reduced order model of a large linear dynamical system. In Electrical Engineering, it is important that the re...

متن کامل

Compact Rational Krylov Methods for Nonlinear Eigenvalue Problems

We propose a new uniform framework of Compact Rational Krylov (CORK) methods for solving large-scale nonlinear eigenvalue problems: A(λ)x = 0. For many years, linearizations are used for solving polynomial and rational eigenvalue problems. On the other hand, for the general nonlinear case, A(λ) can first be approximated by a (rational) matrix polynomial and then a convenient linearization is us...

متن کامل

Rational Krylov: A Practical Algorithm for Large Sparse Nonsymmetric Matrix Pencils

The Rational Krylov algorithm computes eigenvalues and eigenvectors of a regular not necessarily symmetric matrix pencil. It is a generalization of the shifted and inverted Arnoldi algorithm, where several factorizations with di erent shifts are used in one run. It computes an orthogonal basis and a small Hessenberg pencil. The eigensolution of the Hessenberg pencil approximates the solution of...

متن کامل

Krylov Methods for Nonlinear Eigenvalue Problems

We present two generalisations of the Krylov subspace method, Arnoldi for the purpose of applying them to nite dimensional eigenvalue problems nonlinear in the eigenvalue parameter. The rst method is called nonlinear rational Krylov subspace and approximates and updates the projection of a linearised problem by nesting a one-sided secant method with Arnoldi. The second method, called nonlinear ...

متن کامل

Inverse eigenvalue problems linked to rational Arnoldi, and rational nonsymmetric Lanczos

Two inverse eigenvalue problems are discussed. First, given the eigenvalues and a weight vector an extended Hessenberg matrix is computed. This matrix represents the recurrences linked to a (rational) Arnoldi inverse problem. It is well-known that the matrix capturing the recurrence coefficients is of Hessenberg form in the standard Arnoldi case. Considering, however, rational functions and adm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1994

ISSN: 0024-3795

DOI: 10.1016/0024-3795(94)90492-8